Nitrogen Regulates AMPK to Control TORC1 Signaling

نویسندگان

  • Elizabeth Davie
  • Gabriella M.A. Forte
  • Janni Petersen
چکیده

BACKGROUND Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size. RESULTS Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1) activity. Nitrogen-stress-induced TORC1 inhibition differs from amino-acid-dependent control of TORC1 and requires the Ssp2 (AMPKα) kinase, the Tsc1/2 complex, and Rhb1 GTPase. Importantly, the β and γ regulatory subunits of AMPK are not required to control cell division in response to nitrogen stress, providing evidence for a nitrogen-sensing mechanism that is independent of changes in intracellular ATP/AMP levels. The CaMKK homolog Ssp1 is constitutively required for phosphorylation of the AMPKα(Ssp2) T loop. However, we find that a second homolog CaMKK(Ppk34) is specifically required to stimulate AMPKα(Ssp2) activation in response to nitrogen stress. Finally, ammonia also controls mTORC1 activity in human cells; mTORC1 is activated upon the addition of ammonium to glutamine-starved Hep3B cancer cells. CONCLUSIONS The alternative nitrogen source ammonia can simulate TORC1 activity to support growth and division under challenging nutrient settings, a situation often seen in cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1

UNLABELLED The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive ...

متن کامل

Snf1/AMPK promotes the formation of Kog1/Raptor-bodies to increase the activation threshold of TORC1 in budding yeast

The target of rapamycin complex I (TORC1) regulates cell growth and metabolism in eukaryotes. Previous studies have shown that nitrogen and amino acid signals activate TORC1 via the small GTPases, Gtr1/2. However, little is known about the way that other nutrient signals are transmitted to TORC1. Here we report that glucose starvation triggers disassembly of TORC1, and movement of the key TORC1...

متن کامل

The Effect of Ampk and P53 Proteins On Tor Pathway Following Endurance Training In The Left Ventricle Of The Heart Of Diabetic Rats By Streptozotocin And Nicotinamide

Background: AMPK and P53 proteins regulate the TOR protein in the TORC1 complex, which regulates many physiological processes. The aim of this study was to evaluate the effect of AMPK and P53 proteins on the TOR pathway following endurance training in the left ventricle of the heart of diabetic rats by streptozotocin and nicotinamide. Methods: In this experimental study, 12 head two-month-old ...

متن کامل

State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae.

TOR kinase complex I (TORC1) is a key regulator of cell growth and metabolism in all eukaryotes. Previous studies in yeast have shown that three GTPases-Gtr1, Gtr2, and Rho1-bind to TORC1 in nitrogen and amino acid starvation conditions to block phosphorylation of the S6 kinase Sch9 and activate protein phosphatase 2A (PP2A). This leads to downregulation of 450 Sch9-dependent protein and riboso...

متن کامل

Sestrin regulation of TORC1: Is Sestrin a leucine sensor?

Sestrins are highly conserved, stress-inducible proteins that inhibit target of rapamycin complex 1 (TORC1) signaling. After their transcriptional induction, both vertebrate and invertebrate Sestrins turn on the adenosine monophosphate (AMP)-activated protein kinase (AMPK), which activates the tuberous sclerosis complex (TSC), a key inhibitor of TORC1 activation. However, Sestrin overexpression...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015